
HybridSDR Documentation

Mike Walters

Feb 07, 2023

CONTENTS:

1 Introduction 1

2 Getting started 3
2.1 Installation . 3
2.2 Usage . 3
2.3 Block details . 4
2.4 Other buses . 6

3 Indices and tables 7

i

ii

CHAPTER

ONE

INTRODUCTION

HybridSDR is a toolkit for building software-defined radio systems containing a mixture of software running on a
general-purpose computer and gateware running an an FPGA. It allows the user to connect signal processing blocks
graphically. Then, at runtime, the gateware design is assembled using the flexibility of Amaranth.

Crossings between the gateware and software domains are handled seamlessly. At runtime a custom USB device is
built in gateware using LUNA.

The current proof-of-concept is provided as an out-of-tree module for GNU Radio, which includes a graphical interface
to place & connect signal processing blocks and a large range of existing blocks to use. It targets the ECP5 FPGA on
the Amalthea open-source radio platform.

Above is a screenshot from GNU Radio Companion, showing how the HybridSDR blocks can be used. Green lines
represent connections in the gateware domain - these connections and blocks are built into a gateware bitstream at
runtime. Green/black striped lines represent seamless connections across USB streams.

1

https://github.com/amaranth-lang/amaranth
https://github.com/greatscottgadgets/luna
https://www.gnuradio.org
https://github.com/greatscottgadgets/amalthea/

HybridSDR Documentation

2 Chapter 1. Introduction

CHAPTER

TWO

GETTING STARTED

2.1 Installation

Clone and install:

git clone https://github.com/greatscottgadgets/amalthea
cd amalthea
pip3 install --user --editable '.'

Add custom block path to ~/.gnuradio/config.conf:

[grc]
local_blocks_path = /path/to/amalthea/amalthea/gnuradio/

2.2 Usage

An example flowgraph is provided here: https://github.com/greatscottgadgets/amalthea/blob/master/amalthea/
gnuradio/example/hybridsdr.grc

3

https://github.com/greatscottgadgets/amalthea/blob/master/amalthea/gnuradio/example/hybridsdr.grc
https://github.com/greatscottgadgets/amalthea/blob/master/amalthea/gnuradio/example/hybridsdr.grc

HybridSDR Documentation

2.3 Block details

2.3.1 Device block

The HybridSDR device block (Amalthea device in this example) represents the external FPGA device and would contain
parameters for configuring it/connecting to it. It contains the top-level Amaranth design, the callbacks for registering
blocks/connections, and handles the host-side USB streaming when the flowgraph runs.

2.3.2 HybridSDR domain

GNU Radio defines the concept of a sample domain and allows block inputs/outputs to be placed in a particular domain
when they are defined. Here we define a custom hybridsdr domain for our FPGA-targeted blocks:

id: hybridsdr
label: HybridSDR
color: "#81b35d"

multiple_connections_per_input: false
multiple_connections_per_output: true

templates:
- type: [hybridsdr, hybridsdr]

connect: self.amalthea_device.connect(("${ source.parent_block.name }", ${ source.
→˓key }), ("${ sink.parent_block.name }", ${ sink.key }))
- type: [hybridsdr, stream]

connect: self.amalthea_device.connect_usb(("${ source.parent_block.name }", ${␣
→˓source.key }), ${ make_port_sig(sink) })

4 Chapter 2. Getting started

HybridSDR Documentation

This also defines how connections should be made between different domains:

• Connections between two hybridsdr ports are registered with the Device block.

• Connections between hybridsdr and stream (GNU Radio’s standard sample domain) represent a crossing
from the FPGA device to the host PC, and have a special callback that will create a seamless USB stream
during elaboration.

2.3.3 Gateware blocks

These are blocks that represent functionality targeted at the FPGA. Here, Amalthea RX represents the radio receiver on
the Amalthea device and is a source of samples. Amalthea Demod represents an Amaranth HDL module implementing
amplitude, frequency, and phase demodulation.

Blocks are implemented as standard Amaranth HDL modules, using Amaranth/LUNA stream interfaces for input and
output. Blocks are defined and exposed to GNU Radio Companion using standard GNU Radio YAML configuration
files. This configuration includes a template for instantiation which registers the block with the Device block:

id: amalthea_demod
label: Amalthea Demod
category: '[Amalthea]'

templates:
imports: |-

import amalthea
make: |

self.amalthea_device.add_block("${id}", amalthea.gateware.demod.CORDICDemod(13))

Block inputs and outputs are created within the hybridsdr domain:

inputs:
- domain: hybridsdr
dtype: complex
vlen: 1

outputs:
- domain: hybridsdr
label: ampl
dtype: float
optional: true

- domain: hybridsdr
label: freq
dtype: float
optional: true

- domain: hybridsdr
label: phase
dtype: float
optional: true

2.3. Block details 5

HybridSDR Documentation

2.3.4 Extras

GNU Radio doesn’t currently have a way for the device block to run code just before the flowgraph starts, so the gateware
build/program step is invoked using a Python Snippet block in this example:

top_level_cli(self.amalthea_device)
time.sleep(10)
self.amalthea_device.finalize_usb_connections(self)

This builds the gatware and programs the Amalthea device, waits for it to start & enumerate, then creates the host-side
USB connections to the stream-domain blocks.

2.4 Other buses

By default, HybridSDR designs use Amaranth/LUNA stream interfaces between blocks. However, by using the same
techniques above to design custom sample domains & connection behaviour, other bus standards can be supported and
interconnected.

An example block implementing a pipelined Wishbone interface is included. The domain definition includes a template
for inserting an adapter module so that it can interface with the LUNA USB stream interface:

templates:
- type: [wishbone, stream]

connect: |-
self.${source.parent_block.name}_stream = amalthea.gateware.wishbone_example.

→˓StreamAdapter(self.${source.parent_block.name})
self.amalthea_device.add_block("${source.parent_block.name}_stream", self.$

→˓{source.parent_block.name}_stream)
self.amalthea_device.connect_usb(("${ source.parent_block.name }_stream", ${␣

→˓source.key }), ${ make_port_sig(sink) })

6 Chapter 2. Getting started

CHAPTER

THREE

INDICES AND TABLES

• genindex

• modindex

• search

7

	Introduction
	Getting started
	Installation
	Usage
	Block details
	Device block
	HybridSDR domain
	Gateware blocks
	Extras

	Other buses

	Indices and tables

